Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor
نویسندگان
چکیده
The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be recorded, thus showing that a stable and tight seal forms between the nanotube and cell membrane. We also show that multiple BIT-FETs can record multiplexed intracellular signals from both single cells and networks of cells.
منابع مشابه
Neuroprotective effect of minocycline on PTZ-induced epileptiform activity and alterations of the shape of action potentials in snail neurons assessed by using intracellular recordings
Introduction: Epilepsy is a neurological disorder that affects 1-2% of the world population and about 30% of patients are resistant to antiepileptic drug therapy. Therefore, new treatment alternatives are needed. In the present study, the possible neuroprotective effect of minocycline against epileptiform activity induced by pentylenetetrazole (PTZ) was assessed. Methods: Conventional intra...
متن کاملElectrophysiological investigation of the cellular effect of anethole, the chief constitute of anise, on F1 neuronal excitability in garden snail
Introduction: Anethole is the main constituent of Pimpinella anisum L. (anise), a herbaceous annual plant which has several therapeutic effects. In the folk medicine, anise is employed as an antiepileptic drug. Specifically, this study was focused on the cellular effect of anethole, an aromatic compound in essential oils from anise and camphor. Anethole has various physiological effects on t...
متن کاملEffects of the Spacer Length on the High-Frequency Nanoscale Field Effect Diode performance
The performance of nanoscale Field Effect Diodes as a function of the spacer length between two gates is investigated. Our numerical results show that the Ion/Ioff ratio which is a significant parameter in digital application can be varied from 101 to 104 for S-FED as the spacer length between two gates increases whereas this ratio is approximately constant for M-FED. The high-frequency perform...
متن کاملPerformance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor
In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...
متن کاملFree-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions
Recording intracellular (IC) bioelectrical signals is central to understanding the fundamental behaviour of cells and cell networks in, for example, neural and cardiac systems. The standard tool for IC recording, the patch-clamp micropipette is applied widely, yet remains limited in terms of reducing the tip size, the ability to reuse the pipette and ion exchange with the cytoplasm. Recent effo...
متن کامل